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Abstract--A theoretical model of gravity-assisted melting in a spherical enclosure is discussed in this paper. 
A sphere with a phase change material initially in the solid phase at its melting temperature is instan- 
taneously exposed to a uniform higher temperature at the wall. The solid phase is assumed to have a higher 
density as compared to the liquid and drops down as it melts. The effects of natural convection on the 
melting process have been considered in this analysis. Suitable simplifications have been made where 
necessary, in order to reduce computational effort and time. The non-dimensional melt time and heat 
transfer coefficient have been obtained as a function of the property values, operating temperatures 
and physical size for Md<< 1, Ste << 1, 10" ~< Gr ~ l0 s, 10 ~< Pr ~< 100, 0.5 ~< Mt ~ 5.0, 0 g Sb g 0.75, 
0.01 <~ I/Pr a ° ~ 1.0 and 0.01 ~< Ste/c °, ~ 0.2. Natural convection is found to limit the range ofapplicability 

of previously published correlations. 

INTRODUCTION 

MANY ENGINEERING problems involve solid-liquid 
phase change heat transfer. Examples of  phase change 
phenomena are manufacturing processes such as cast- 
ing and welding, environmental phenomena such as 
freezing and thawing of  soil and lakes, purification of  
semiconductors, manufacture of  frozen food, thermal 
energy storage using phase change materials, melting 
and freezing of  snow around pipes, etc. The use of  
latent heat thermal energy storage for solar energy 
applications has recently hecn of  considerable interest 
because ofits advantages. These include a high storage 
density and uniform temperature at which the energy 
is released. Extensive reviews on heat transfer related 
to this field have been published recently [1-3]. 

One of  the most common geometries associated 
with thermal storage systems is the spherical capsule 
[4, 5]. Simplified models of  gravity-assisted melting in 
spheres where the effects of  natural convection have 
not been considered have been published previously 
[6-9]. However, the effects of natural convection are 
not completely undersiood, and in this paper, com- 
plete solutions including these additional effects are 
presented. Design correlations have also been 
developed based on these results. 

DESCRIPTION OF MODEL 

Figure 1 shows the geometry for the problem. 
Experiments [9, 10] have shown the formation of  two 
distinct liquid regions as the solid drops down. One is 
a thin liquid region below the solid core from where 
the liquid is continuously forced out by the weight 
of the solid to the second larger liquid zone. For 
convenience, these two regions will be referred to as 
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the '(lower) liquid film' and the '(upper) liquid zone'. 
Since the mode of  heat transfer is quite different in 
the two zones, they will be analyzed separately in this 
paper. However, the following assumptions apply to 
both regions. 

(1) The melting process is axisymmetric. Exper- 
imental studies on the melting process in spherical 
[9] and cylindrical [11] capsules with a uniform wall 
temperature confirm that the process is indeed 
symmetric. 

(2) The phase change material has constant prop- 
erties, except for density in the body force term, which 
is assumed to vary linearly with temperature. This 
assumption is valid when the temperature difference 
within the domain is not very high. 

Solid 
'~ core 

f i l ~  

O: Origin for f i lm solution 
O': Origin for Liquid zone solution 

FiG. I. The geometry. 
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NOMENCLATURE 

Ar Archimedes number, (ps--pl)gD3/(pv 2) 
c e specific heat at constant pressure 
D diameter 
F function of 0, equation (11) 
Gr Grashofnumber, g ~ ( T . -  TF)D3/v 2 
g gravitational constant 
h heat transfer coefficient 
k thermal conductivity 
1 latent heat of fusion 
Md non-dimensional parameter, equation (2) 
Aft non-dimensional parameter, equation (1) 
Nu Nusselt number, q D / k ( T . -  Tc) 
Pr Prandtl number, v/~ 
p pressure (not including hydrostatic 

pressure) 
q heat flux 
R transformed radial coordinate 
r radial coordinate 
Ste Stefan number, cp(T . -  TF)/! 
T temperature 
t time 
v velocity 
z drop of solid core. 

Greek symbols 
,, thermal diffusivity 
p coefficient of thermal expansion 
6 film thickness in lower region, ro-r i  

position of interface at 0 = n 
O transformed angular coordinate 
0 azimuthal angular coordinate in spherical 

polar coordinate 
OA angle defining junction between upper and 

lower zones 
o melt thickness at 0 -- 
q~ angle made by normal with vertical axis 

stream function 
co vorticity. 

Superscripts and subscripts 
° non-dimensional property ratio 

(liquid/solid) 
a average (area) 
C cold (initial temperature of solid core) 
F fusion (melting) 
i inner (interface) 
I liquid 
m mean (area and time) 
n normal direction to interface 
o outer (wail) 
s solid 
t top (upper zone). 

Note: symbols refer to liquid property values 
unless defined otherwise. 

(3) No mushy region is formed during the melting 
process. The presence of a macroscopically sharp 
interface is expected during the melting of a pure 
substance. 

LOWER FILM SOLUTION 

Given the assumptions in the earlier section, the 
governing equations describing the melting process 
can be formulated. The following non-dimensional 
variables are used [11] : 

vt 
r*, z*, s* = r/D, z/D, s/D, t* = 

T*= T - T e  
T . -  Te 

P P--Ph___._2, 
P*=ApgD or P * = A p g D  

v* --- Mt Md p°Dv Dm 
, m *  = 

v Mt p,v 

where m is the mass melting per unit area per unit 
time, P the pressure including the hydrostatic pressure 
Ph,, rl the position of the interface, ro the location 

of the outer wall, s the length measured along the 
interface, TF the melting temperature of the solid 
phase change material, 2". the temperature of the 
enclosure wall during the melting process, v the vel- 
ocity of liquid, and z the drop of the solid core; the 
superscipt ° refers to the liquid to solid property ratio, 
and Mt and Md are two non-dimensional parameters 
associated with film melting in the absence of natural 
convection [11] 

[['Ste p°13 "~- o.2s 

T M  

-- \ L T J  ] o) 

i" Ste p° I '~02s 

I- k,,T  1 T M  
= " ( 2 )  

For solar energy applications, Md, Sb, Ste p°/Pr, 
Ste << 1, Mt ~- 0.1-I0 and Ar, Gr >> 1. Based on these 
values, the governing equations are identical to those 
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used previously [6], except for additional buoyancy 
terms in the Navier-Stokes equations when natural 
convection is important. Natural convection in the 
film will affect the melting process when the parameter 
Gr]Ar is of order 1 [11], i.e. when the temperature 
difference between the wall and the melting tem- 
perature of the phase change material is high. Also, if 
the density difference between the solid and the liquid 
phases is very small, Gr/Ar may be quite large and 
once again natural convection will affect the heat 
transfer. The Navier--Stokes equations in the film 
including these buoyancy terms are given below [11]. 

Film momentum equations ( Navier-Stokes equations) 

Gr T cos 0 = Op 
a r  Or (3) 

Mdj_  rr O,,.1 Gr 1 .  
dr L Or J + - ~ r  T sin 0 = r d-O (4)  

with the boundary conditions 

r o = 0 . 5  , r = r o : ~ = O  , r=ri:vo=O 

where 6 is the film thickness ro-ri .  

Method of solution 
The method of solution is an extension of the solu- 

tion technique originally developed for the cylindrical 
geometry by Bareiss and Beer [10], and later used for 
the spherical geometry by Roy and Sengupta [6] and 
Bahrami and Wang [8]. When natural convection 
effects (Gr/Ar ffi 0) are negligible, the solution for the 
melt rate is given by [6] 

d= [ c' , l T M  

= L ~ (c- t ) j  (5) 

where c is a constant of integration given by 

,6, 

and c' is 

, LFr °v,l c" = r Or L ooj = -- ~(l--cos 0^)(2+COS OA). 

(7) 

This equation is further simplified by using the geo- 
metric condition 

z = cos 0^ (8) 

and the final solution is 

dz [ !  2 ( l --z)(2+z)l° '=s 
dt ffi ~ .j . (9) 

A solution method identical to the one used when 
Gr/Ar = 0 can be used if it is possible to show that 

Op Gr 
00 ~ Tr sin 0 = Function of 0 only. (I0) 

On integrating the momentum equation in the radial 
direction 

Gr ~ p=--~rrCOSO Tdr+F(O) (11) 

the pressure gradient in the angular direction is 
therefore 

_ _  = G r  0 dF 
Opo0 ~r[sinOfTdr-c°sO~-ofTdrl+'d-O 

Gr l-In r -  1 
= - - / - - r i r  o sin 0 

Ar L ri-ro 

dri ln r-r/ro 2 1 dF -----=-~ r; cos 0 (12) 
+ d0 (r i - ro)  + ~ "  

For Md << I, r is approximately equal to 0.5 since 6 is 
very small, and so the pressure gradient becomes 

L J oL- -J (13) O0 dO Ar 

The constant c' is therefore 

PdF Gr l - l - l n0 .51  d rcos01-1 
c '  • /a~ L==y=jjsln 0"  (14) 

Integrating for the function F, we obtain 

F(O) = F(0A) + C' (In (tan 0/2)  - -  In (tan 0^/2)) 

c°s°^l (1,) 
+ ~ L  4 JL a a(o^)j" 

The boundary condition for pressure (p = 0 at 0 = 0^ 
[6]) may be applied at the enclosure wall or the inter- 
face to find the value for F(0A) 

p(O^) = 0 (]6) 

o r  

Gr [-1-1n 0.5 co20.1 
F(O^) = ~ r r L ~ C O S  O A + - -  • (17) 

Thus, the pressure distribution is given by 

p ffi c' In (tan (0/2)) - In (tan (0^/2)) 

+ ~ r [ - c o s  0 ^ - I  
(is) 

Now, using the same procedure as in the solution for 
Gr/Ar ffi 0, the constant c' becomes 

c' = - ½(1 - c o s  0^) (2+COS 0^)  

l Gr 
+ ~ ~rrCOS 0^(1 +cos 0^). (19) 
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(12 SotuUon re111on " ~  

" 4 J  
0.0 I I I I 1 

10-4 lO-S 10-2 10-~ 10 ° I0  ~ 

O r l A r  

FxG. 2. Range of film solution for different values of Gr/Ar. 

The final solution is therefore 

( Cr z(1+z)TI o" 
~ ~ .~ _L / . (20) 

Discussion 
The solution for the drop rate brings out an 

extremely important point. The film solution is found 
to be applicable only as long as 

z <~ -O.5+~/(0.25+2/(l+l.SGr/Ar)). (21) 

This limiting value of z and the region of validity of 
the film solution is given in Fig. 2. Beyond this point 
the solution fails, as the rate of drop of the solid core 
becomes zero. The film thickness gradually increases 
after this, since once dr./dt --* O, dt/dt --* m/p, and the 
film thickness continuously increases. Thus the film 
solution can no longer be used to predict the position 
of the interface beyond this point. 

The effect of natural convection is to increase the 
pressure and thus the total force acting in the upward 
direction (equation (18)). As a result, the film thick- 
ness increases, and the heat transfer and the melt rate 
are reduced. Figure 3 shows the effect of Grashof 
number on the melt rate. The melt remains almost 
identical to the zero Gr case for the most part but 
tends to slow down at the final stages of melting. Such 
a trend had also been noticed previously by Bareiss 
and Beer [10] in their experimental study of melting 
in a cylindrical enclosure. However, they were unable 
to give any explanation for this difference in melt rate. 

'°f Or/At 
Ga 

(1sk /r~ 

.i/,Oo.O. 
(1o I f  1o.o, I I J 

(10 (13 0.6 0.9 1.2 
t 

FIG. 3. Film solution for drop w time for different Gr/Ar: 
the ends of lines indicate the limits of validity of the film 

solution. 

S O L U T I O N  IN U P P E R  L IQUID  Z O N E  

In the liquid zone, it is necessary to use the same 
reference quantities for length, time, temperature and 
melt flux since these are based on the overall melting 
process. However, the reference quantities for velocity 
and pressure need to be changed since the charac- 
teristic dimension of the liquid region is different from 
that in the film. Since the flow is buoyancy driven in 
the liquid zone, for moderate to high Orashof 
numbers, the velocity can be non-dimensionalized as 
follows: 

~* = ~/(~/ ( t r ) v /  D ). (22) 

There is no obvious reference pressure in this case, 
and it is convenient to use the reference pressure used 
for the film. 

A complete analysis of the melting process includ- 
ing the heat transfer at the upper surface of the solid 
core requires the study of both the upper and lower 
liquid zones. Since the process is quite different in 
the two regions, and a relatively simple closed-form 
solution is available for the lower region, it is advan- 
tageous to modify this solution where necessary and 
couple it with results of a numerical model of the 
upper region. Thus, the governing equations can be 
written as 

1 0 F + ~ / ( G r ) O . ~ T = I ~ 2  T (23) 
Mt ~t 

l~co 
Mt at +~l(Gr)O'~co = ~2co+~/(Gr)T~x#) (24) 

- c o  = ¢~, (25) 

1 ~ - 1  ~ 
V,=r as in000 ,  VO=rsinO 0r (26) 

dz C__~ [.(I -0(2+0 Gr~(180~°'2' 
dt 12 Ar 

(27) 

= 1 -ri(O = ~) = z+o (28) 

where ~b is the Stokes stream function, co the vorticity, 
the interface location and ~ the melt thickness at 

0 = n. When there is no melting at the upper surface, 
a = 0, and ~ -- z. A few points must be noted at this 
point. 

(a) Since the problem is axisymmetric, and the 
governing equations in the upper liquid region cannot 
be simplified, the stream function-vorticity for- 
mulation of the governing equations has been used 
above. 

(b) Equation (27), the solution from the earlier 
section, describing the rate of drop of the solid core, 
has been modified to account for the melting at its 
upper surface. 

(c) Melting occurs at the upper surface of the solid 
core, but experiments show that the surface remains 
approximately spherical [9]. This has also been veri- 
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fled numerically as discussed later. Thus, the melt 
thickness at the upper surface is assumed to be con- 
stant and equal to o (equation (28)). 

(d) A coordinate system with the orion at the 
center of the sphere used to obtain the film solution 
will create complications when used with a numerical 
model because of the possibility of having more than 
one boundary point along a coordinate line [9]. A 
coordinate system with the origin at the bottom of the 
sphere, used by Prasad and Sengupta [12], is therefore 
used for the analysis of the upper liquid zone. 

(e) In the film solution, the pressure at the upper 
surface of the solid core has been assumed to be equal 
to the hydrostatic pressure. Thus, a correction term 
may be required for the pressure forces acting on the 
solid core. The values for pressure at the interface 
for 0 > 0^ can be obtained by solving the primitive 
equations in the upper zone. These equations can be 
written as 

~Pf--~-r [ Gr°'5~ Mt Og GrO.S g.~-~+ ~2~+GrO. s Tgl. 

(29) 

Careful consideration of the above equations shows 
that the effects of pressure at the upper surface on the 
drop rate will be relatively small for most cases. At 
the interface, the velocity of the liquid is of order 
l/Mt~/(Gr). Thus, the convective terms are small and 
can be neglected. Since the temperature of the fluid at 
the interface is equal to the melting point, the buoy- 
ancy forces are also equal to zero. The pressure gradi- 
ent along the interface is therefore balanced by the 
shear stresses and is therefore very small compared to 
the pressure gradient in the film. Consequently, the 
effects of pressure at the upper surface are neglected 
in this analysis. 

No generalized solutions are available for the Nav- 
ier-Stokes equation. The governing equations for the 
upper region therefore need to be solved numerically. 
The boundary conditions for the upper region are 
dependent on the melting taking place at the lower 
surface and thus have to be carefully analyzed. This 
is discussed in greater detail in the following section. 

Method of solution 
Two important features of the upper liquid zone, 

the irregular shape and the change in this shape with 
time, complicate the numerical model. The domain is 
fixed by an algebraic transformation to simplify the 
solution technique 

0 - 0 ^  
R= ro r-r-----A-i'-r i O=n---~A' t=t .  

As a result, the governing equations now become 

1 OT A 02T 2B 02T C 02T 
Mt Ot = Pr ~ + Pr 0R 00 +Pro0  2 

+ [ D I +  D21OT [El+ E210T 
PriOR + PrlO 0 (30) 

1 OoJ 02co 02o 
M-"tt O-t ffi A - ~  +2BAR 00 

02o do "El 0o 
+ C b - ~  + (D 1+D2) b ~ +  t + E 2 ) ~  

OT OT 
+Fm+GI~-~+G2~ (31) 

020 _0~ __0~ 
+ C~-~  +/)~-~ - E 2 ~  (32) 

f + +l [ +l v,=C= X ~ - R + Y ~  , v 0 = C  B Z~-~ (33) 

where A, B, etc. are transformation coefficients. 

Boundary conditions 
The boundary conditions for the upper zone depend 

on the melting taking place at the film. To be able to 
put the velocity at the junction between the lower 
and the upper zones equal to zero, the characteristic 
velocity of the liquid in the film must be much smaller 
than the characteristic velocity in the liquid zone. For 
typical solar thermal systems, this ratio is 

vf 1 
0.1 < -  = < 10 (34) 

vt Mt Md p°~/(Gr) 

where vf is the liquid velocity in the film and vt the 
liquid velocity in the upper zone. Thus, the boundary 
velocities cannot be neglected in the liquid zone and 
the streamlines will intersect the interface as it drops 
down. Keeping this point in mind, the boundary con- 
ditions are derived. 

Enclosure wall and axis of symmetry. The boundary 
conditions for the no-slip wall and the symmetry axis 
are similar to those used in a variety of fluid dynamics 
problems. The value of the stream function is zero 
throughout, as is the vorticity along the symmetry 
axis. At the enclosure wall, the vorticity boundary 
condition is obtained by using a Taylor series expan- 
sion for the second-order gradient [13] 

0 ~  2 
aR~ = ~ ~-m (3S) 

and by using a finite difference form for the cross 
derivative 

02~ - I 
0R 00 = 2ARA® (~+- l.e+ i ~b,_ 1.o- l). (36) 

All other terms are zero in the vorticity definition 
equation which can now be evaluated. The tem- 
perature gradient along the symmetry axis is zero. 

Solid-liquid interface. At the interface, the total 
velocity is due to two factors: the downward move- 
ment of the core and the density difference between 
the solid and liquid phases. Since the volume of the 
enclosure is assumed to be a constant, the second 
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component must be neglected. The normal velocity at 
the interface is therefore given by 

I I dz 
v, = Mt x/(Gr) "~ cos ~ (37) 

where $ is the angle between the normal at the inter- 
face and the vertical axis. The radial and angular 
velocities are therefore 

v, = v, cos (~b- 0), ve ---- v, sin (~b- 0). (38) 

From the stream function definition equations it is 
possible to show that 

IFZ r q 
(39) 

This equation is numerically integrated using the 
boundary condition that the stream function is zero 
a t ® =  1. 

Since both components of  velocity are non-zero in 
this case, the complete vorticity equation has to be 
used to obtain the boundary values. One-sided dif- 
ferencing is used to solve the vorticity equation. 

Film-liquid zone junction. The fluid velocities at the 
junction are not known since the coordinate system 
differs in the film solution. However, the form of the 
angular velocity can be assumed to be identical 

ve = K(r +b+c/r) (40) 

and the stream function is therefore given by 

i 3 3 b 2 2 ~/ = - Ksin O  ̂[ 3(r -ro) +~(r -ro) + c(r-ro)]. 

(41) 

The velocity and the stream function are known to be 
zero at the outer wall, and the velocity and the stream 
function values are known at the interface. Thus, the 
values of the coefficients are 

b = - ( r  i - to )  + K ,  ( 4 2 )  

c = -ro( -ro+K,)  (43) 

K--~ = 3 rlvei sin O^(rl-ro) Oi + 1 (44) 

The vorticity is once again found by using the com- 
plete vorticity definition equation and the temperature 
is assumed to vary linearly from the interface to the 
wall. 

Initial conditions. If all terms in the momentum 
and energy transport equations ((30) and (31)) are 
multiplied by Mt, it immediately becomes obvious 
that the terms accounting for the rate of  change of 
vorticity and temperature in a control volume (Oc0/dt 
and 8T/~O are of  order 1 and are certainly much 
smaller than a typical convective term for moderate 
to high Gr. Thus, these terms may be neglected and a 

'quasi-steady' solution for different values of ~ may be 
obtained in the upper region. It is possible to use 
a 'quasi-steady' solution since the interface remains 
almost spherical even after melting takes place at the 
upper surface [9]. Besides reducing the CPU time 
required, there are some additional advantages of  
using such a scheme. 

(a) Different numbers of  grid points can be used 
very easily for different values of  ~. Thus, finer grids 
can be used when ~ is large in order to obtain realistic 
solutions. 

(b) In the unsteady solutions, it was necessary to 
start the solution after ~ reached a certain arbitrary 
value, which could be as high as 0.2, to avoid stability 
problems. It is difficult to estimate the total melt vol- 
ume at the upper surface for small ~. Using the 'quasi- 
steady' solution, it is possible (and in fact, necessary) 
to extrapolate for times when a solution is unavail- 
able. It is also possible to obtain solutions for con- 
siderably smaller values of  ~ with relatively less effort. 

(c) Since the upper liquid zone becomes uncoupled 
from the interface equations (but not vice versa), Md 
is no longer a parameter while solving the 'quasi- 
steady' model. Thus, fewer computer runs will be 
required. 

In order to obtain the quasi-steady solution, the flow 
field is assumed to be completely stagnant at the start 
of  the numerical solution. The boundary condition 
for velocity at the interface and the junction between 
the upper zone and the liquid film is obtained from 
the drop rate so that the flow profile in the domain is 
realistic. Thus, even though the boundary is fixed, 
liquid comes into the domain from the film and goes 
out at the interface, and the streamlines will intersect 
the interface. 

Solution algorithm 
The governing equations are converted into finite 

difference forms using central differences for the space 
derivatives and forward differences for the time 
derivatives. At the boundaries, one-sided first order 
differences are used where central second order space 
derivatives are not available. These sets of  difference 
equations are then solved using an explicit algorithm. 

(a) New values of  temperature are obtained by 
solving the energy equations in the liquid using the 
values available from the earlier time step. 

(b) New values for vorticity are similarly obtained 
by solving the vorticity transport equation using old 
values for all variables except temperature. 

(c) Using these values of vorticity, the vorticity 
definition equation is solved using an SOR scheme to 
obtain new values for the stream function. 

(d) The velocities and the boundary vorticities are 
calculated using these stream function values. 

(e) Steps (a)-(d) are repeated until quasi-steady 
state is achieved. 

A hopscotch algorithm for parabolic and elliptic equa- 
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tions with cross-derivatives [14] was also used in some 
preliminary runs in an attempt to reduce com- 
putational time. Though it was possible to use larger 
time steps using this method, errors were slightly 
greater, and the explicit scheme discussed above 
was therefore used throughout the study. 

Verification 
Extensive verification of  the model and computer 

code has been done. The computer code was written 
to solve the complete model in an unsteady fashion 
as was done earlier by Prasad and Sengupta [12]. In 
order to reduce computer time requirements, a few 
modifications were made later to obtain the 'quasi- 
steady' model. Verification of this code was achieved 
as. follows. 

(a) Results for conduction and natural convection 
in a concentric spherical annulus were obtained. The 
natural convection results have been compared with 
the analytical solution of  Mack and Hardee [15], and 
the maximum difference in Nusselt number is less than 
10%. 

(b) The film solution was also obtained by running 
the unsteady model with Gr, Pr, and Gr/Ar equal to 
zero and using a melt time step of  10- 4. The difference 
in the results was negligible. 

(c) 'Quasi-steady' solutions have been compared 
with a completely unsteady solution for C = 0.3 and 
0.56 with the parameters Ar, = 5 × 106, Ste p°/Pr = 
2 x 1 0  -3, G r = 5 x l 0  ~, Pr=50  and Gr/Ar=O.l. 
The difference can be seen to be small in Fig. 4. 

(d) In order to verify that the effects of  pressure at 
the upper surface are negligible, an unsteady solution 

was obtained using the parameters in (c), except with 
Gr/Ar = 0.0. The change in melt time was negligible. 

(e) Grid size and time-step independence of  the 
unsteady solution have been checked by considering 
cases with a 26 x 26 grid with a time step of  2.5 x 10- 8, 
a 21x21 grid with a time step of  5 x 1 0  -8 and a 
21 x 21 grid with a time step of 2.5 x 10-s. The differ- 
ence in melt time was negligible. 

(f) Both (sensible) heat balance and mass balance 
in the upper liquid zone alone have been checked 
during the unsteady solution and it was found that : 

Heat i n -  Heat out - Heat stored in liquid 
"-5% 

Heat in 

(46) 

Melt at lower su r face -  Mass added to upper surface 

Melt at lower surface 

< 1 % .  (47) 

If the overall heat balance which includes the energy 
used to melt the solid phase at the lower surface is 
included, the net heat unaccounted for is much smaller 
than 5% and is negligible for all cases. Complete 
details are given in Roy [16]. 

Discussion 
The parameters in this problem are At,, Ste p°/Pr, 

Gr, Pr, and Gr/Ar. The first two, Ar, and Ste p°/Pr, 
are always used as the melt time and melt distance 
parameters, Mt and Md. Since Md does not affect the 
liquid region in the 'quasi-steady' model, this param- 
eter can be dropped. Also, since the effect of pres- 
sure at the upper surface is small, Gr/Ar was not 

(Q) Unsteady: 21 x 21 x (5x10  -e)  

f 

(b) Quosi -steody" 21x21 

FIG. 4. Comparison of unsteady and quasi-steady solutions: stream function and temperature distribution. 
At, = 5 x l06, Ste p°/Pr = 2 x l0 -3, Gr = 5 x l05, Pr = 50, Gr/Ar = 0.1. 

m l I  " a  ~ i-IQ 
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FIG. 5. Stream function and temperature distribution. 
Gr = lOS, Pr = 50, Mt  = 1.0, ~ = 0.3. 

considered in this study. Nusselt numbers used in this 
study have been defined as follows: 

N u  = q D / k ( r ,  - Tc) (48) 

where q is the heat flux (with subscript i for interface, 
a for average at the wall at any time t, and m for 
mean, averaged over the entire melting period, at the 
wall). Results have been obtained for ranges of  pa- 
rameters usually encountered in solar thermal energy 
systems. M t  has been varied from 0.5 to 5.0, Gr from 
104 to 106 and Pr from 10 to 100 for £ ranging from 
0.1 to 0.9; 21 x 21 grids have been used for all cases 
where ; ~< 0.3 and 31 x21 grids have been used in 
other cases. Time steps varying from 5.0 x 10 -7 to 
5 x 10- 8 have been used as required in order to obtain 
stable realistic solutions. 

200[- Or- 10 s 
1 ~  Pr-50 

I N Mr= 1.0 

, 

o I , - 'q  Wu~,~id .0.., 

8 

Fro. 6. Interface Nusselt number distribution. 

Before the effects of  the different parameters are 
discussed separately, some general observations about 
the flow in the liquid region can be made. 

(a) A large stagnant region of  hot fluid develops 
above the solid core near 0 = n (Fig. 5). This has 
been noted previously by others (e.g. refs. [17, 18]) in 
experiments with cylindrical geometry. Unfor- 
tunately, such results are not available for the spheri- 
cal geometry. Because of  this hot fluid, the interface 
Nusselt number in this region is quite high (Fig. 6). 

(b) The downward velocity of  the solid core has a 
very large impact on the flow field in many cases. This 
point has not been reported to date. 

(c) The local wall Nusselt number in the upper 
region was in general much lower (<  10%) than the 
wall Nusselt number in the film region. 

Grasho f  number  effects. From Fig. 7, the flow pat- 
tern can be seen to be strongly affected by Gr. A s  Gr 

increases, the effect of the solid core moving down- 
ward reduces and the hot fluid from the film tends to 
flow upwards and closer to the wall near 0 = 0^. When 
Gr reduces, the velocity due to the do~aaward motion 
of the solid core becomes increasingly important. As 

(o) Gr= 10 6 ( b )  Gr= lO  4 

FIG. 7. Effects of Orashof number: stream function and temperature distribution. Pr = 50, Mt = 1.0, 
C = 0.3. 
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a consequence, the temperature gradient at the outer 
wall near 0 = ~ decreases. However, since the wall Nu 
is low in this region, it does not affect the overall heat 
transfer coefficient significantly. Thus, the parameter 
Mtx/(Gr), which is the ratio of the typical natural 
convection velocity to the solid core velocity, is not of 
much importance in determining the heat transfer 
coefficient at the outer wall even though it does have 
a significant qualitative effect on the flow patterns. 

Prandtl number effects. The effects of  Prandtl num- 
ber on the fluid flow and the temperature distribution 
in the liquid zone can be seen in Fig. 8. For  Pr = 100, 
the flow tends to be dominated to a greater extent by 

the solid core velocity. The higher the Prandtl number, 
the greater is the viscosity and the lower the effects of 
natural convection in the upper region. As a result, 
the temperature gradient and Nusselt number at the 
wall increase with an increase in Pr, but the change is 
quite small for the range of  Pr which has been con- 
sidered in this study. 

Melt time parameter effects. Figure 9 shows the 
effects of the melt time parameter M r  In order to 
study the effects of  Mt in the upper zone, it is advan- 
tageous to consider the value of l / M t  which i s o f  the 
order of the downward velocity of  the solid. Thus, as 
Mt increases, the downward velocity decreases, and 

((3) Pr " 10 ( b )  Pr= 100 

F=G. 8. Effects of Prandtl number : stream function and temperature distribution. Gr = 10 5, Aft •ffi 1.0, 
t; = 0.3. 

(a)  Mt = 0.5 ( b )  M('= 5.0 

Flo. 9. Effects of melt time parameter Mt: stream function and temperature distribution. Gr = l0 s, 
Pr = 50, C =0.3. 
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(o) ~=0.1 (b) ~=0.5 

FIo. 10. Effects of interface location C: stream function and temperature distribution. Gr ffi l0 s, Pr = 50, 
Mt = 1.0. 

buoyancy plays an increasing role in the liquid region. 
As a result, the temperature gradient near 0 = 
increases with decreasing Mt where the solid velocity 
is high. However, since the temperature gradient at 
the wall near 0 -- 0^ is not really affected by the change 
in Mt, the overall heat transfer coefficient remains 
almost constant. 

Drop height effects. The flow pattern in the liquid 
region is dependent on the size (and shape) of  the 
liquid zone as expected (Fig. 10). When ~ is low (0.1), 
the distance between the wall and the solid core is 
small and so the temperature gradient and Nusselt 
number at the wall are quite high. As melting 
progresses, the Nusselt number rapidly drops as the 
temperature gradient continuously decreases at the 
wall. 

DEVELOPMENT OF CORRELATIONS 

In order that the results of  this study may be easily 
used in the actual design of  storage systems, it is 
necessary to obtain correlations for the important 
design parameters. Of particular interest are the vari- 
ation of  the overall Nusselt number and the rate at 
which the solid interface drops down during the melt- 
ing process. 

Drop rate and time 
The location of  the interface at 0 -- n is given by 

d~ dz de 
d"t = d"-t + ~ (49) 

where do"/dr is the melt rate at the interface at 0 = n 

do" 
d'-t = Md Nui(O = n). (50) 

It would be convenient to obtain d~/dt, and thus 
Nui(O = ~) as a direct function of  dz/dt, so that this 
term can simply be dropped from the final correlation 
if natural convection effects need to be ignored. Keep- 
ing this in mind, a multiple linear regression analysis 
was done using the Nusselt numbers obtained from 
the numerical study (104 ~< Gr <~ 106, 10 ~< Pr <~ 100, 
0.5 ~< Mt <~ 5.0). The following equation with a 
maximum error of about 5% was obtained for the 
Nusselt number at 0 = ~: 

Nui(O = ~) -- 2.945Gr °'Is Pr °'31 Mt -°'Is dz (51) 
dt" 

It is interesting to note that the Nusselt number is 
independent of the position of the interface ~, except 
for the effect of dz/dt itself. Also, if we note that 
Pr/Mt ~- Ste/Md when p° ~ I (which is the approxi- 
mation used in the upper liquid region to maintain 
mass balance), the Nusselt number is 

Nui (0 ---- 7 0 --- 2.945Gr °" ,3 pr o. i s (Ste/Md) o. 13 dr. 
dt" 

(52) 
Thus, the effect of  heat transfer to the liquid in the 
film (which is directly proportional to Ste/Md) on the 
melt rate at the upper surface is of  the same order as 
the effect due to heat transfer at the upper wall (a 
function of  Gr and Pr). The effect of  Rayleigh number 
(--Gr Pr) itself is quite small (Nu oc Ra e''3 Pr °'es) 
when compared to other spherical geometries where 
Nu oc Ra T M  [19]. This is probably due to the fact that 
the outer wall is heated in this case, whereas the inner 
body is usually at a higher temperature for other typi- 
cal spherical geometries. For Sb < 0.75 and Md << 1, 
equation (51) can be modified to include the effects of  
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subcooling 

d--t = [1 +2.945Gr °a3 Pr °'3t Mt -°'t3 Md(l  - S b ) ]  

(53) 

dz/dt is approximately independent of  subcooling [7] 
and is given by equation (27) 

dz ( 1  [ ( 1 - 0 ( 2 + 0  Gr(l+01~ °'2, 
d-t = ~ 12 ~rr 8 ".]} (54) 

where c is given by the real root of  the cubic equation 

Equations (53)-(55) can now be used to estimate the 
drop rate for the following range of parameter values : 

104~<Gr<~106 , 10~<Pr<~100, 0.5~<Mt<~5.0 

Md<<l ,  Ste<<l,  0.05~<z~<0.9 

Sb < 0.75, Gr/Ar << 1. 

In order to obtain the drop height as a function of 
time, it is necessary to integrate the above equation. 
This is somewhat complicated and a simplified cor- 
relation can be derived from equations (54) and (55) 

dz 
= 1.636-1.70(0+ 1.425( 2-0.093~ 3. (56) 

dt 

The time and interface positions can be obtained from 

t = (0.686~+0.023~ 2+0.355~3)/(1 + C) (57) 

= (l .546t-0.770t 2 +0.135t3)(1 + C) (58) 

where 

C = 2.945Gr °'13 Pr °'3t Mt  °'13 M d ( l - S b ) .  (59) 

Results obtained by the correlation given above have 
been compared with the experimental data of Moore 
[20] in Fig. 11. The error is greater than that obtained 
using the simplified film solution alone due to the 
additional melting at the upper surface. Bahrami and 
Wang [8] have suggested that the difference between 
their results and the experimental data is due to an 
error in the reported Stefan number. A closer exam- 
ination of the experimental data [20] also tends to 
confirm this argument [16] since the thickness of  the 
glass enclosure used in their experiments was of  the 
same order as the film thickness. 

Average wall Nusselt number 
The average wall Nusselt number at any time t 

(equation (48)) can be derived by considering the 
Nusselt numbers at the lower and upper surfaces sep- 
arately. At the lower surface, the average Nusselt 
number for 0 < 0^ is 

dz ( 1 + 0  ( l+0 .5S te )  
Nu, -~ dt 2 M d  (60) 

0 . 5  "CompLete solution: equatlcms . . / /  / 
1531-(55} t o t  / /  ~ , "  

t ~ ) \ / /  / ÷  
FiLm iot.ution {Gf/.Ar.O ) ~ V ' /  / o 

0.4 Experimental data \ f f  / o • a 
(.oore (,98,)) \ ~ / '~ .  

° *  

a3 / 5 (  / ~an 

GZ 

0. ,  

0.0 I I I I 
0.0 0.1 0.2 0.3 0.4 

t 

FIG. 11. Comparison of numerical results with experimental 
data. I'-IOA (a): Md=3.6x l0  -3, Mt---4.3, Gr=5.4x 
l0 s, Gr/Ar =~ 0.11. + <>[] (b) : Md = 4.3 × 10 -3, Mt = 2.6, 

Gr = 1.2x 106, Gr[Ar = 0.24. 

The average Nusselt number at the wall in the upper 
region is a function of  Mt, Gr, Pr, z and dz/dt. Once 
again, it is advantageous to obtain Nua as a direct 
function of  dz/dt. A third order curve was used to 
account for the variation with z, and a multiple 
regression analysis then gave the following relation 
with a maximum error of  about 10% : 

Nu. = 1.308Gr °" 22 prO.OS Mt o. I s(1 _ 3.47~ 

+4.69~ 2 -  1.68~ 3) ~-~. (61) 

The average Nusselt number over the complete sur- 
face after taking the effects of subeooling into account 
therefore becomes 

1 dz 1-(1 - Sb+O. 5S t e )  ,. 
Nu. = ~ ~ [_ ~ o - ~ )  

+ 1.308Gr u'~2 Pr °'°s Mt°'lS(l - S b )  

(1 - 2.47~+ 1.22~ 2 + 3.01~3)]. (62) o 

The mean wall Nusselt number (equation (48)) aver- 
aged over the entire melt time can be evaluated by 
integrating until t - t(melt) or ~ = 1 and dividing by 
the time (or ~ = 1) to give 

I (I - Sb + 0.5Ste)/6Md 
l + 1"21Gr°'22 Pr°'Os Mt°'tS(l-Sb) 

Num = 11 +2.945Gr °'13 Pr TM 
I Mt -°t3 Md(l-Sb) 

x ( l+S te , )  (63) 

where Ste, is the solid Stefan number (cm(TF-- Tc)/l). 
The additional term is required to account for the 
excess heat required to raise the temperature of  the 
core to the melting temperature. 
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As discussed before, when Sb ~ 0 most of  the heat 
transfer to the core takes place when t < 0.05. Thus, 
the correlations for Nu, as a function of  ~ are valid 
only after approximately 5% of  the melt when 
0 < Sb <~ 0.75. Higher values of  subeooling are not 
expected since this would imply a very high Ste,, which 
would defeat the purpose of  using a latent heat ther- 
mal storage system. The other ranges of  parameters 
for the correlations are 

104~<Gr~<10 ~, 10~<Pr~<100, 0.5~<Mt~<5.0 

Md << 1, Ste << 1, Gr/Ar <~ 0.1 

0.05 ~< z ~< 0.9, Sb < 0.75. 

The estimated overall errors for the above correlations 
are of the order of 5%. However, experimental con- 
firmation is required. 

It should also be noted that all the above cor- 
relations have been developed so that individual 
effects of subeooling, natural convection in the film 
and natural convection in the upper region can be 
easily separated out from the primary conduction heat 
transfer in the film. Each of  these are described by 
separate terms which can be dropped if necessary. 

CONCLUSIONS 

The effects of  natural convection on the melting 
process of an unfixed phase change material in a 
spherical enclosure with an isothermal boundary has 
been investigated. Numerical results and correlations 
have been obtained for the specific case when Md and 
Ste << 1 for the range of parameters encountered in 
typical solar thermal applications. A few general con- 
clusions can be drawn from this study. 

(a) Naturai  convection affects the flow and pres- 
sure distribution in the film. The parameter Gr/Ar, 
which is the ratio of  the buoyancy force due to density 
variation of  the liquid with temperature and the den- 
sity difference between the two phases, reduces the 
melt rate and places an upper bound for the range 
over which the film solution is valid. 

(b) The fluid flow and heat transfer process in the 
upper liquid region are essentially quasi-steady, since 
the liquid velocity in both the film and the upper zone 
are much greater than the rate of  movement of  the 
interface. 

(c) In the upper zone, the flow field is strongly 
affected by the downward motion of  the solid core, 
particularly for low Gr and high Pr. 

(d) The heat transfer at the upper wall is much 
smaller than the heat transfer through the liquid film 
for all cases. 

(e) A significant amount (15% for typical cases) of  
melting takes place at the upper surface of  the solid 
core. This is a function of the Grnshof and Prandtl 
numbers as well as the sensible heat input to the liquid 
in the film. 

(f) The effects of  Grashofnumber and Prandtl num- 
ber in the upper region are small ( N u .  Ra °'3 pro.os) 
when compared to natural convection effects in 
commonly encountered spherical geometries where 
Nu oc Ra °'2~ [19]. 
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FUSION ASSISTEE PAR LA PESANTEUR DANS UNE CAVITE SPHERIQUE--EFFETS 
DE LA CONVECTION NATURELLE 

R6sum~--Un mod61e th6orique est discut6 pour la fusion assist6¢ par la pesanteur, dans une cavit6 
sph6dque. Une sph6re contenant une phase solide, initialement ~. la temp6rature de fusion, est instan- 
tan6ment expos6e sur la paroi fi une temp6ratur¢ uniforme plus 61ev6e. La phase solide est suppos6e avoir 
une densit6 plus 61ev6e que le liquide et les gouttes tombent pendant la fusion. L'effet de la convection 
naturelle sur le m6canisme de fusion est consid6r6 dans cctte analyse. Des simplifications convenables sont 
faites, si n6cessaire, de fa~;on a r6duire le temps et les difficult6s de calcul. Le temps adimensionnel de fusion 
et le coefficient de transfert thermique sont obtenus en fonction des param6tres thermophysiques, des 
temp6ratures op~ratoires pour Md<< 1; Ste<< 1; lO~<~Gr<~ 10~; IO<~Pr<~ 100; 0,5~<Mt~<5,0; 
0 <<. Sb <~ 0,75 ; 0,01 ~< l /Pr  ¢t ° <~ 1,0 et 0,01 ~< Ste/c~ ° <~ 0,2. On trouve qu¢ la convection naturelle limite 

le domaine d'application des formules pr6c6demment publi6es. 

EINFLUSS DER NATt~RLICHEN KONVEKTION AUF DAS 
SCHWERKRAFTUNTERSTOTZTE SCHMELZEN IN EINEM KUGELFORMIGEN 

HOHLRAUM 

Zusammenfassung--ln dieser Arbeit wird ein theoretisches Modell f'fir das schwerkrafiunterstfitzte 
Schmelzen in einem kugelf6rmigen Hohlraum diskutiert. Eine Kugel aus Phasenwechselmaterial bcfindet 
sich anffinglich in festem Zustand bei Schmelztemperatur und wird pl6tzlich einer gleichf6rmigen h6heren 
Temperatur an der Wand ausgesetzt. Es wird angenommen, dab die feste Phase eine gr6~ere Dichte als 
die flfissige hat und daher beim Schmelzen herabsinkt. Die Einflfisse der natfidichen Konvektion auf den 
Schmelzvorgang werden in der vorliegenden Analyse bcrficksichtigt. Geeignete Vereinfachungen werden 
vorgenommen, falls dies notwendig erscheint, um Bcrechnungsaufwand und -zcit zu verringern. Es ergibt 
sich die dimensionslose Schmelzzeit und der W.~rmefibergangskoefftzient in Abh~.ngigkeit yon Stoffei- 
genschafien, Arbeitstemperaturen und physikalischen Gr6fien: Md<< 1, Ste  << 1, 104 ~< Gr <<, 106, 
10 ~< Pr <~ I00,0,5 ~< M t  <~ 5,0,0 ~< Sb ~ 0,75,0,01 <~ l/Prct ° <~ 1,0 und0,01 ~< Ste/cp ° <~ 0,2. Eszeigt sich, 
dab die natfirliche Konvektion den Anwendungsbereich frfiher ver6ffentlichter Korrelationen bcgrenzt. 

II3IAB.qEHHE B COEPHqECKOPl HOJIOCTH FIPH BO3~EI~ICTBHH CHJlbl T~DKECTH: 
~ I ~ E K ' T  ECTECTBEHHOI~i KOHBEKI.[HH 

/umcrmam---O6cy'4~acrc~ TeopeT~ecr,~ MO~IC.~b n~exul n c0epxqecEog nonocrx a none cgma 
TxKeCTH. MaTepxaa, nepnoHaqa.~HO xaxoaJnm~ci n Tl~'p~og 0a3e npu Te~mepaType naasncm~, 
MrHOSCX~O no,a~epraeTC~ JlegcTnmo 6oacc IS~acozog nocTollmog TeMnepaTypld y CTeHr~. l'lpe~moJ~a- 
raeTc~, wro T s e p ~  0pa3a xMee-r 6oa~my~o naOTHOC~ no cpauemno  c m~a~OCTb~O x oTpusamnm- 
MHCa no Mepe nJlaaJteHmi Igal~rLqMH. AHa.q~Hpycrca sammxe ~ o g  I~OI-II~KI~[H Ha IIpOWX~ 
naas~em~u. C uea~o co~amem~a 3aTpaqxsaeMoro Ha pac~cna npeMem~ caenama coccscrc~y~oume 
ynpoulcnx:~. Onpc~le.qemd ~'3pa3MCpHOC . 1 : ~  n.rlaB.qexiLq H ico3~gI~ewr Tertaonepenoca n ,.asxcx- 
MOC'rX OT 3ea'~eHx~t x a p a r r c p x ~  ee.~qxx, pa6o.mx ~ m e p a ' r y p  x qbx~x~cc~oro pa3Mcpa npx ~ d  << l : 
Ste<<l; lO~<~Gr<~lO6; lO<~Pr<~lOO;O,5<~Mt<~5,0;O<~Sb<~O,75;O,Ol<~I /Pr~t°<~l ,O 0,01~< 
Ste/cp°<<. 0,2. Hai~eHo, wro ecrccr~HHaa z o m ~ ¢ , ~  orpaaa,maacr o6aacr~ npuMeHcxxa panee ony6- 

JIHROBaHHMX COOTHOILIeHI~. 


